Optimal Control Modification Adaptive Law with Covariance Adaptive Gain Adjustment and Normalization
نویسندگان
چکیده
In the presence of large uncertainty, a controller needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. As the adaptive gain increases, the time delay margin for a standard model-reference adaptive control decreases, hence loss of robustness. Optimal control modification is a new adaptive control method developed recently to achieve fast adaptation with robustness. Its formulation is based on the minimization of the L2 norm of the tracking error, posed as an optimal control problem. Computer simulations as well as pilot-in-the-loop high-fidelity simulations in a motion-based flight simulator demonstrate the effectiveness of the new adaptive law. In this study, we extend the optimal control modification to include a covariance-like adjustment mechanism of a time-varying adaptive gain to prevent persistent learning which can reduces robustness. The covariance update law can also include a forgetting factor in a similar context as a standard recursive least-squares estimation algorithm. The covariance adaptive gain adjustment allows an initial large adaptive gain to be set arbitrarily and provides to ability to drive the adaptive gain to a lower value as the adaptation has achieved sufficiently the tracking performance. Alternatively, a normalized adaptive gain may be used to reduce adaptation when the amplitude of an input basis function becomes large. Flight control simulation results demonstrate that both approaches can achieve significant robustness as measured by the time delay margin. Furthermore, a recent flight test program of the optimal control modification with normalization on a NASA F-18 aircraft demonstrates the effectiveness of the adaptive law.
منابع مشابه
Optimal control modification for robust adaptive control with large adaptive gain
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain so as to reduce the tracking error rapidly. However, a large adaptive gain can lead to highfrequency oscillations which can adversely affect robustness. A new adaptive law, called optima...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملOptimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a sta...
متن کاملRobust Optimal Adaptive Control Method with Large Adaptive Gain
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adapt...
متن کاملAdaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems
Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...
متن کامل